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Many proliferative, invasive, and immune tolerance mechanisms 
that support normal human pregnancy are also exploited by ma-
lignancies to establish a nutrient supply and evade or edit the 
host immune response. In addition to the shared capacity for 
invading through normal tissues, both cancer cells and cells of 
the developing placenta create a microenvironment supportive 
of both immunologic privilege and angiogenesis. Systemic altera-
tions in immunity are also detectable, particularly with respect to 
a helper T cell type 2 polarization evident in advanced cancers and 
midtrimester pregnancy. This review summarizes the similarities 
between growth and immune privilege in cancer and pregnancy 
and identifies areas for further investigation. Our PubMed search 
strategy included combinations of terms such as immune toler-
ance, pregnancy, cancer, cytokines, angiogenesis, and invasion. We 
did not place any restrictions on publication dates. The knowledge 
gained from analyzing similarities and differences between the 
physiologic state of pregnancy and the pathologic state of cancer 
could lead to identification of new potential targets for cancer 
therapeutic agents.
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A substantial body of literature exists describing the 
mechanisms cancer cells use to escape apoptosis and 

migrate through normal structures while evading a host im-
mune response. What is not well known, however, is how 
these complex and interrelated mechanisms are orches-
trated, starting with modulation of the immune response 
within the tumor microenvironment and ending with mi-
gration and proliferation of cancer cells at distant sites. 
One potential model to further study how a single malig-
nant cell could proliferate and then metastasize undetected 
within a host is that of normal human pregnancy, in which 
the developing placenta invades the uterus and a semial-
logeneic fetus escapes rejection from the maternal immune 
system.1 A multitude of immunomodulatory properties of 
the fetomaternal interface (placenta) have evolved to allow 
the survival of the immunologically distinct fetus to partu-
rition without an attack from the maternal immune system. 
The similarities between the mechanisms involved in feto-
maternal and tumor-associated immunologic tolerance are 
intriguing and suggest a common pattern; however, neither 
system of immune evasion is perfect. A clear example of 
placental failure to protect the fetus against maternal im-
munity is that of Rh incompatibility. In multiparous women 

sensitized against fetal Rh antigens, re-exposure to fetal Rh 
antigens with subsequent pregnancy may lead to hemolytic 
disease of the newborn and fetal death.2 Such imperfec-
tions of shared mechanisms of immune tolerance between 
pregnancy and cancer suggest that cancer rejection via im-
munologic means may be possible, even considering the 
myriad mechanisms extending immunologic privilege to 
the fetus as well as cancer cells.
	 This review summarizes the parallels in proliferation, in-
vasion, and immune privilege between cancer and pregnan-
cy by first detailing shared characteristics of fetal-derived 
trophoblast cells of the placenta and tumor cells. It then de-
scribes the similarities between tolerogenic systems within 
the tumor microenvironment and the fetomaternal interface. 
Finally, it provides an overview of the evidence for systemic 
immune modulation in cancer and pregnancy and suggests 
the implications of these similarities in designing an inte-
grated approach to cancer therapy. Our PubMed search 
strategy included combinations of terms such as immune 
tolerance, pregnancy, cancer, cytokines, angiogenesis, and 
invasion. We also searched for articles on cellular subsets, 
including natural killer (NK) cells, dendritic cells (DCs), 
regulatory T cells (T

reg
), and other lymphocyte populations 

with respect to their presence and function in pregnancy 
and cancer. We did not place any restrictions on publication 
dates. A better understanding of how the maternal immune 
system is altered during the normal processes of implanta-
tion, gestation, and labor may translate into individualized, 
novel therapies aimed at restoring immune competency in 
patients with advanced malignancies.

Shared characteristics of trophoblast 
cells and tumor cells

Five days after fertilization, the human zygote forms into 
a structure consisting of 2 primary cell lines: the inner cell 
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mass (or embryoblast) and the trophoblast.3 Trophoblast 
cells constitute the outer layer of the blastocyst, rapidly 
proliferating and invading  the maternal endometrial de-
cidua around day 7. A monolayer of cytotrophoblast cells 
surrounds the embryonic disc as the embryo completely 
embeds beneath the uterine decidua. By day 9, cytotropho-
blast cells have differentiated into 2 distinct cell types: the 
syncytiotrophoblast and the extravillous trophoblast (EVT). 
The multinucleated syncytiotrophoblast cells form the ex-
ternal layer and are terminally differentiated. These cells 
are involved in fetomaternal nutrient exchanges and endo-
crine functions (such as β-human chorionic gonadotropic 
production). In contrast, EVT cells have a proliferative and 
invasive phenotype, migrating through the syncytiotropho-
blast into the uterine wall to anchor the placenta beginning 
around day 14 after implantation.4 These EVT cells display 
a phenotype strikingly similar to cancer cells with their ca-
pacity for proliferation, migration, and establishment of a 
blood supply, making them a compelling model for onco-
logic comparison (Figure). This review highlights several 

shared characteristics of trophoblast and tumor cells and 
discusses them in the context of existing or developmental 
targeted cancer therapeutics (Table 1).

PROLIFERATION

Like tumor cells, trophoblast cells have a very high prolif-
erative capacity and exhibit molecular characteristics found 
in rapidly dividing cancer cells.54 For example, increased 
telomerase activity, typically not observed to a substan-
tial degree in normal somatic cells, is detectable in 85% 
of human cancers.55 In fact, the intracellular concentration 
of telomerase is exponentially related to the proliferative 
capacity of a cell.56 In human pregnancy, telomerase activ-
ity is highest during the first trimester and decreases with 
maturation of the placenta.57 Survivin, a protein that pro-
motes proliferation and inhibits apoptosis, is overexpressed 
in many cancers58 and is also up-regulated by trophoblast 
cells.59 Inhibition of survivin by knockdown with small in-
terfering RNA leads to a marked decrease in proliferation in 
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TABLE 1. Tumorlike Attributes of the Human Trophoblast Cells and a Selection of Representative 
Targeted Cancer Therapeutic Strategies in Use or Developmenta

	Shared trophoblast-
	 tumor attribute	 Mechanism	 Targeted therapeutic strategy	 Drug/compound nameb

Self-sufficiency in	 Activation of MAPK pathway	 Inhibition of RAS-RAF-MEK-ERK 	 Sorafenib; ARRY-142886; PLX-4032; XL281;
	 growth  signals				    signaling		  RAF265; PD03259015			 
			   Activation of PI3K-AKT	 Inhibition of RAS-PI3K-AKT-MTOR 	 Quercitin, XL147, and XL765; GDC-0941; BEZ235; 
			   pathway		  signaling		  PX-8666; sirolimus; everolimus; temsirolimus	
		  FAK activation	 FAK inhibition	 TAE2267; dasatinib
		  HGF autocrine loop	 HGF or C-MET inhibition	 OA-5D58; AMG-1029; SGX-523; PF-0234106; XL880	
		  EGF autocrine loop	 EGF or EGFR inhibition	 Erlotinib; cetuximab; panitumumab; XL647		
		  IGF autocrine loop	 IGF or IGFR inhibition	 AEW54110

		  CSF autocrine loop	 CSF1 or CSF1R inhibition	 GW258011; CYC1026812

		  PDGF autocrine loop	 PDGF or PDGFR inhibition	 AZD2171; pazopanib; sorafenib; sunitinib; 		
							       E7080; ZD6474; AG-013736 			 
		  VEGF autocrine loop	 VEGF or VEGFR inhibition	 Bevacizumab; RAF265; BMS-690514		

Insensitivity to	 TGF-β pathway activation	 TGF-β2 blockade	 AP 1200913; LY-215729914

	 antigrowth signals	 CDK	 CDK inhibition	 SNS-03215; AT751916; flavopiridol
		  SMAD	 ALK inhibition leading to decreased 	 A 83-0117

					     SMAD phosphorylation	

Evasion of apoptosis	 IGF1R signaling	 IGF1R blockade	 Concept reviewed by Werhova and Haluska18; R1507;	
							       CP-751,87119,20

		  PDGFR signaling	 PDGFR blockade	 Imatinib; sorafenib; sunitinib; E7080; ZD6474;	
							       AG-013736; pazopanib 
		  BCL2	 BCL2 inhibition	 Oblimersen 
		  Survivin	 Survivin inhibition	 YM-155; terameprocol
		  XIAP	 XIAP antisense	 AEG35156 
		  Endoreduplication	 Maintain p53 integrity; Aurora kinase 	 Nutlin-3a  (promotes endoreduplication)21; 
					     inhibition; induction of p21		  VX-68022; theaflavins23

					     (waf1/cip1)		

Limitless replicative 	 Telomerase	 Telomerase inhibition	 GRN163L; RHPS4
	 potential	 HGF–C-MET signaling	 MET inhibition	 PF-0234106

Sustained	 VEGFR signaling	 VEGF inhibition	 Bevacizumab; sorafenib; sunitinib; E7080; ZD6474;	
	 angiogenesis						      AG-013736; pazopanib; IMC-1121B; AZD2171; 
							       CHIR-265; ABT-510; BMS-690514; XL880; aflibercept	
		  HIF-1α	 HIF-1α inhibition	 PX-478
		  PGF	 PGF inhibition	 TB-40324

		  FGF	 FGF inhibition	 PI-88 

Tissue invasion	 Integrins	 α2 integrin inhibition; αv integrin	 E 7820; CNTO 95; cilengitide; abergrin (MEDI 522) 
					     inhibition; αvβ3 + αvβ5 integrin		
					     inhibition; αvβ3 integrin inhibition		   
		  MMPs	 Down-regulation of MMPs	 Curcumin25; Saponins26

		  Wnt signaling	 Cyclooxygenase-2 inhibition	 Celecoxib27

		  HSP27	 3-hydroxy-3-methylglutaryl 	 Lipophilic statin medications: atorvastatin,		
					     coenzyme-A reductase inhibition		    simvastatin, lovastatin, or fluvastatin28

Immune evasion	 Decreased HLA class I	 Increased HLA class I expression	 Gamma irradiation29; samarium-153-ethylenedi-	
			   expression				    aminetetramethylenephosphonate30; 
							       DNA-demethylating agent 5-aza-2′-deoxycytidine31

		  Nonclassical HLAG	 Neutralization of soluble HLAG or 	 None yet developed, but 5-aza-2′-deoxycytidine
			   expression		  reduced gene transcription of 		  increases HLAG in leukemia cell lines with
					     HLAG		   unknown clinical immunomodulatory impact32

		  PGE2	 Decreased PGE2 synthesis	 Celecoxib33

		  Complement regulatory 	 Neutralization of miniantibodies to	 MB55 and MB59 tested in mouse models only at time
			   proteins		  CD55 and CD59		  of writing of this manuscript34

		  IDO	 Decreased IDO expression, IDO 	 Celecoxib,35 1-methyl D-tryptophan36

					     blockade	
		  CD44 expression (also soluble)	 CD44 ligation	 Anti-CD44 monoclonal antibodies37

		  MUC1	 MUC1 radioimmunotherapy	 Radioimmunotherapy with MUC1 monoclonal 
							       antibody38,39

		  Neuropilin 1 and 2	 Neuropilin receptor	 None yet available, but concept reviewed by Mac 
					     blockade		  Gabhann and Popel40

		  B7H1	 B7H1 blockade	 None yet available, but concept reviewed by 
							       Thompson et al41

		
(Continued on next page)
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trophoblast cell lines.60 A similar decrease in proliferation 
is seen with survivin in small interfering RNA treatment 
of prostate,61 glioma,62 non-Hodgkin lymphoma,63 cervical 
cancer cells, and breast cancer cells.64 Both survivin and 
telomerase levels are dramatically higher in hydatidiform 
moles than in normal placentas, providing insight into the 
potential involvement of these 2 different mechanisms in 
neoplastic transformation.59

	 Another pathway supportive of both trophoblast and 
cancer cell proliferation is the IGF pathway (for expansion 
of all gene symbols, see Glossary of Genetics Terminol-
ogy at the end of the article). By binding to the IGF1R on 
cytotrophoblast cells, IGF stimulates proliferation through 
the MAPK pathway and survival via activation of the PI3K 
pathway.65 Normally, levels of IGF are tightly regulated by 
IGF-binding proteins and protease pregnancy-associated 
plasma protein A, a binding protein.66 Loss of binding 
protein regulation may contribute to the malignant phe-
notype.67 In cancer cells, the IGF1R pathway is not only 
mitogenic and antiapoptotic but is involved in protecting 
cancer cells from damaging effects of chemotherapy and 
radiation, potentially as a result of  its effects on down-
stream signaling pathways.68 Additionally, the fetal form of 
the insulin receptor IR-A, which is highly expressed in fe-
tal tissues and responsive to IGF2, is also a member of the 
IGF-signaling system.69 In many cancers, including those 
of the breast and ovary, dysregulation of this fetal form 
of the insulin receptor becomes the predominant isoform 
leading to IGF2-stimulated proliferation and survival.70,71

INVASION

The sine qua non of both a successful pregnancy and the 
growth of cancer is the establishment of a blood and nutri-
ent supply, and invasion through normal tissues is required 
for this process. However, whereas cancer cells spread 
throughout the host and then engage in local proliferation, 

trophoblasts follow an organized pattern of differentiation 
from proliferation to invasion without distant metastasis.72 
Some of the molecular switches involved in this differen-
tiation pattern and their relevance for cancer therapeutic 
agents are discussed in the sections that follow.
	 As EVT cells migrate down the cytotrophoblast cell 
columns into the maternal decidua (Figure), they encircle 
and erode into the maternal spiral arteries and differentiate 
from a proliferative phenotype into an invasive phenotype.73 
This differentiation occurs at about 10 to 12 weeks of ges-
tation and is associated with opening of the intervillous 
space and exposure to maternal blood. Many parallels can 
be observed between invasive EVT cells and cancer cells. 
Some of these similarities are highlighted in the sections 
to follow; for a more in-depth discussion, readers should 
refer to excellent reviews by Soundararajan and Rao74 and 
Ferretti et al.75

	 Requirements for cellular invasion include changes in 
cell adhesion molecules, secretion of proteases, and avail-
ability of growth factors. An example of a cellular program 
used by both cancer cells76 and trophoblast cells77 to pro-
mote invasion is epithelial-mesenchymal transition, which 
results in loss of cell-to-cell contact inhibition. Associated 
with this program are changes in integrin expression and 
loss of E cadherin, allowing loss of polarity and enhanced 
motility.78,79 Both trophoblast and cancer cells secrete pro-
teases to degrade extracellular matrix proteins required for 
dispersal through tissues. The cytoplasm of migratory EVT 
cells express HSP27, which is correlated with MMP2 ac-
tivity.80 Basal HSP27  levels are unusually high in cancer 
cells, protecting them from apoptotic stimuli,81 and are as-
sociated with metastatic potential.82 Finally, growth factors 
such as epidermal growth factor stimulate motility of EVT 
cells through phosphorylation of p42 and p44 MAPKs and 
the PI3K-dependent proteins, AKT and p38.83 Epidermal 
growth factor is associated with tumor cell invasiveness 
through expression of MMPs.84

TABLE 1. Continueda

	Shared trophoblast-
	 tumor attribute	 Mechanism	 Targeted therapeutic strategy	 Drug/compound nameb

Immune evasion	 FASL	 Recombinant FASL	 APO01042

	 (continued)	 CCL5	 CCL5 vaccine adjuvant	 Engineered CCL5 superagonist43

		  TRAILR	 TRAILR2 agonist	 Lexatumumab 
		  TIM3	 TIM3 blockade	 None yet available, but concept reviewed by Anderson44

		  TLR	 Synthetic TLR agonists	 Ampligen (TLR3 agonist)45; imiquimod (TLR7 agonist)46

		  Galectins	 Galectin inhibition	 GCS-100 (Galectin 3 antagonist)47; thiodigalactoside 
							       ester derivatives48

		  CD200	 CD200 antibody	 ALXN600049

		  SDF1 (also known as CXCL12)	 CXCR4 (CXCL12 receptor) antagonism	 Plerixafor50; CTCE-990851

		  Osteopontin	 Down-regulation of osteopontin	 Small interfering RNA therapy52

					     expression

a  HLA = human leukocyte antigen. For expansion of all gene symbols, see Glossary of Genetics Terminology at the end of the article.
b Data regarding drug compounds are from Mayo Clin Proc,53 unless a citation is given to indicate otherwise.
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	 Switches involved in triggering trophoblast and cancer 
cell molecular programs for invasion are not completely 
understood. The Wnt pathway, a system highly conserved 
across species involved in cellular proliferation and mo-
tility, has recently been implicated in switching tropho-
blast cells from a proliferative to an invasive phenotype.85 
Activation of the Wnt pathway is aberrant in many can-
cers, resulting in escape of β-catenin from proteosomal 
degradation, with subsequent β-catenin translocation into 
the cell nucleus and activation of multiple target genes.86 
Although direct activation of β-catenin alone has shown 
no effect on motility of EVT cells, inhibition of the Wnt
–β-catenin pathway can block blastocyst implantation.87 In 
EVT cells, activation of PAR1 (also known as the thrombin 
receptor) also stabilizes β-catenin and is associated with a 
proliferative and invasive capacity, whereas application of 
PAR1-silencing RNA inhibits EVT invasion.88 Consistent 
with the need for tight regulation of invasive trophoblast 
cells, PAR1 is expressed in EVT cells between the 7th and 
10th gestational week but is abruptly shut off by the 12th 
week.89 Constitutive increased expression of PAR1 can 
be seen in cancer cells, especially in cells lacking normal 
p53 activity.90 In vitro assays have shown PAR1 antago-
nism to inhibit MMP1-induced endothelial cell activation 
in tumor–endothelial cell communication.91 Whether this 
system could successfully be targeted for cancer therapy 
is under investigation. Other signal transduction pathways 
common in both trophoblast and cancer cell invasion in-
clude the JAK-STAT pathway,92 FAKs, G proteins, Rho-
associated kinase, MAPKs, PI3K, and SMAD family pro-
teins.73 All of these pathways represent areas of current 
anticancer therapeutic development.
	 As EVTs acquire an invasive phenotype during pla-
cental development, they become polyploid (4N-8N) by 
switching from mitotic division to endoreduplication,93 a 
process in which G2 or M phase (4N) cells replicate DNA 
without undergoing mitosis. In trophoblast cell lines, poly-
ploid trophoblast giant cells are relatively resistant to the 
DNA-damaging effects of radiation,94 illustrating a mecha-
nism by which survival is promoted in invasive trophoblast 
cells. This process can also be observed in cancer cells 
treated with DNA-damaging agents. Endoreduplication 
can be induced in tumor cells on exposure to genotoxic 
agents such as paclitaxel95 and cisplatin; a nonproliferative, 
senescent state in a small population of cells is induced in 
the latter case. The polyploid tumor cells can undergo de-
polyploidization to form diploid, cisplatin-resistant escape 
cells.96 In cells with an impaired p53 system, treatment with 
the Aurora kinase inhibitor VX-680 leads to endoredupli-
cation followed by apoptosis.22 However, in 2 wild-type 
p53 cancer cell lines, stabilization of p53 by Nutlin-3a, an 
inhibitor of the p53-binding protein MDM2, leads to initial 

endoreduplication followed by the emergence of stable ra-
diation- and cisplatin-resistant tetraploid clones.21 A better 
understanding of the EVT endoreduplication process may 
lead to the development of targeted drugs to maintain tu-
mor cell chemotherapeutic sensitivity.

VASCULOGENIC MIMICRY

As trophoblasts invade maternal spiral arteries, they further 
differentiate to display a vascular phenotype in a process 
termed vasculogenic mimicry, in which cells other than 
endothelial cells form vascular structures.97 Vasculogenic 
mimicry can also be observed in aggressive cancers, and 
the genes and signaling pathways involved with the pro-
cess of vasculogenic mimicry may be shared between EVT 
and cancer cells.98 For example, the matrix glycoprotein–
binding galectin 3 is highly expressed in EVT cells.99 Ga-
lectin-3 also appears to be a key factor in the development 
of an endothelial phenotype and the tube formation well 
described in aggressive melanomas.100 Galectin inhibitors 
are in preclinical testing as cancer therapeutic agents.101 
Mig-7 was found in circulating tumor cells and tumor tis-
sue (regardless of tissue of origin) from more than 200  
patients with cancer; notably, it was absent from healthy 
controls.102 Mig-7 expression is associated with invasion 
and vasculogenic mimicry in cancer cells and also has re-
cently been demonstrated in invasive embryonic cytotro-
phoblasts, peaking when EVT cells invade maternal de-
cidua and remodel the vasculature during early placental 
development.103 This finding represents the only known ex-
pression of Mig-7 in noncancerous cells. Cancers with an 
endothelial phenotype have not been shown to be respon-
sive to antiangiogenic therapies.104 Because cancer therapy 
aimed at proliferating cells is less likely to be effective in 
invading cells,105 galactin-3, Mig-7, and other pathways 
involved in vasculogenic mimicry may also be important 
targets for cancer therapy.

ANGIOGENESIS

Molecular circuits involved in neoangiogenesis separate 
from vasculogenic mimicry are also likely shared between 
EVT and tumor cells. Angiopoietins and VEGF family 
members are extremely important in both spiral artery re-
modeling in placentation106 and the growth of many tumor 
types.107 Inhibition of VEGF has become an important ther-
apeutic strategy in many cancers, although resistance can 
develop,108 resulting from the induction of an angiogenic 
rescue program characterized by the up-regulation of multi-
ple angiogenic genes in hypoxic tumor cells and supporting 
stroma.109,110 Another member of the VEGF family, PGF, is 
a part of the VEGF blockade–associated rescue program that 
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is involved in the response to pathologic conditions, such as 
wounds, ischemia, inflammation, or cancer.111 Both VEGF 
and PGF are highly expressed in trophoblast cells.112 It is 
interesting that serum levels of PGF increase after treatment 
of patients with cancer with the anti-VEGF monoclonal an-
tibody bevacizumab.113 Preclinical studies indicate that PGF 
blockade reduces neoangiogenesis and lymphangiogenesis, 
hampers  recruitment of intratumoral macrophages, and is 
not associated with the typical anti-VEGF adverse effects 
(thrombosis, hypertension, proteinuria, and  microvascular 
pruning) in healthy mice.110

	 Also important for angiogenesis is the oxygen-sensitive 
MTOR pathway.114 Central to controlling trophoblast cell 
proliferation in response to nutrients and growth factors,115 
MTOR is expressed on the transporting epithelium of in-
tact human placenta.116 It is downstream of the PI3K/AKT 
pathway; controls cell cycle progression and cell size and 
mass; is involved in angiogenesis via the VEGF, IGF, and 
HIF-1α–signaling pathways; and is constitutively activated 
in many malignancies.114,117 The MTOR inhibitor everoli-
mus has antiangiogenic properties.118 A better understand-
ing of the PI3K/AKT/MTOR pathway and other molecular 
circuits used by trophoblast cells in proliferation, invasion, 
and endothelial interactions may lead to the development 
of targeted therapies for cancer.75 Overall, we are in our 
infancy of understanding the complexity, redundancy, and 
interrelatedness of these molecular pathways in both pla-
centation and neoplasia.

IMMUNOLOGIC PROPERTIES OF THE 
FETOMATERNAL INTERFACE AND TUMOR 

MICROENVIRONMENT

In addition to sharing many proliferative and invasive 
features, the cells of the trophoblast, like cancer cells, 
actively modulate the host immune response to develop 
and sustain a nutrient supply. Historically, the placenta 
was considered an inert, mechanical barrier protecting 
the semiallogeneic fetus from maternal immunologic 
attack.119 Current evidence, however, supports just the 
opposite—many maternal and placental immunomodu-
latory factors are required for adequate placental inva-
sion. Around 40% of decidual cells are cells of the innate 
immune system (eg, NK cells, macrophages, and DCs), 
a substantial proportion considering that the uterus is a 
nonlymphoid organ.120 Likewise, although cancer previ-
ously has been considered immunologically invisible to 
the host, many recent studies support the notion that can-
cer cells actively engage immune cells; for example, the 
presence of tumor-infiltrating lymphocytes has been well 
described in the literature.121 The main components of the 
maternal immune response at the fetomaternal interface 

and the similarities to the tumor microenvironment are 
discussed in the sections that follow.
	 The most abundant immune cell present at the fetomater-
nal interface is the uterine NK (uNK) cell, which constitutes 
approximately 70% of all immune cells found in this tissue.122 
Uterine NK cells are thought to be recruited from peripheral 
blood when interleukin (IL)-15 is secreted by endometrial 
stromal cells.123 They are distinct from peripheral blood NK 
cells in that they do not express CD16, the FcRγIIIA recep-
tor required for antibody-dependent cell-mediated cytotox-
icity.120 The mechanisms associated with this loss of CD16 
are unclear but may be related to high levels of TGF-β with-
in the microenvironment.124 Also, in contrast to peripheral 
blood NK cells, uNK cells are more immunomodulatory 
than cytotoxic, secreting galectin 1 to induce tolerogenic 
DCs125 as well as angiogenic factors VEGF and PGF that are  
important for decidual remodeling.126 An improper balance 
of cytotoxic to regulatory NK cells could contribute to recur-
rent miscarriage and pre-eclampsia.127 Expression of IL-15 
and NK cell infiltration have been reported in many different 
malignancies,128 including renal cell carcinoma,129 with vari-
able prognostic implications. Recently, tumor-infiltrating 
CD16-NK cells have also been characterized and appear to 
behave similarly to uNK cells with respect to cytokine pro-
duction and reduced cytotoxic activity.130 A closer look at 
factors that determine the balance of killer and regulatory 
NK cells during pregnancy may help identify mechanisms 
that shift immunity toward NK cytotoxic activity in patients 
with cancer.
	 Also infiltrating the decidua, albeit in smaller numbers 
than uNK cells, are macrophages, T

reg
, and DCs. Macrophag-

es phagocytose apoptotic EVT cells and secrete IL-10 and 
IDO, contributing to the tolerogenic T

H
2 milieu.131 Gene ex-

pression profiling of decidual macrophages supports an im-
munosuppressive/anti-inflammatory phenotype with higher 
expression of CCL18, IGF1, IDO, neuropilin 1, and other 
genes associated with M2-polarized macrophages.132 Tu-
mor-associated macrophages can be both inflammatory and 
immunosuppressive, and T

H
1/T

H
2 polarization is effected 

through the activation of NF-κB (also known as NFKB1).133 
In fact, in vitro studies suggest that tumor-associated mac-
rophages may be re-educated to display a classically activat-
ed rather than an M2 phenotype by inhibition of inhibitory 
kappa B kinase β, the major activator of NF-κB.134

	 Regulatory T cells are additional important mediators of 
tolerance in both pregnancy and cancer. Immunophenotypi-
cally, these cells express surface CD4, CD25, and FOXP3, 
and they expand in both decidua135 and peripheral blood136 
during normal pregnancies. This expansion is antigen- 
specific and is induced by paternal/fetal alloantigens137 and 
not simply by hormonal changes in pregnancy.138 A de-
crease in this lymphocyte subset is associated with spontane-
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ous abortion139 and pre-eclampsia.140 Regulatory T cells are 
also expanded in cancer and are implicated in impaired an-
titumor immunity,141 suppression of effector T lymphocyte 
proliferation,142 and increased tumor blood vessel density,143 
suggesting an important link between immunity and angio-
genesis. Regulatory T cells in patients with cancer also rec-
ognize tumor-specific antigens and proliferate in response 
to antigenic stimulation.144 Targeting the T

reg
 population to 

boost antitumor immunity is under investigation with agents 
such as denileukin diftitox (IL2/diphtheria fusion protein) or 
LMB-2 (Fv fragment of CD25 antibody/Pseudomonas en-
dotoxin A fusion protein) and CTLA-4 inhibitors.145,146 Some 
of the benefit of cytotoxic chemotherapy may be derived 
from concomitant impairment of the immunosuppressive 
T

reg
 proliferation driven by the cancer.147

	 Antigen-presenting CD83+ DCs are involved in the 
maintenance of the T

H
2-predominant state in decidual tis-

sues,148 as well as at other mucosal surfaces.149 However, 
the role of the DC is likely more complex than antigen pre-
sentation and secretion of immunosuppressive cytokines. 
Ablation of uterine DCs leads to decidualization failure and 
embryo resorption in mice; this occurs even with synge-
neic pregnancy in mice in which alloantigens are absent.150 
Dendritic cells also represent another link between immu-
nity and angiogenesis, secreting soluble FLT1 (also known 
as VEGFR1) and TGF-β1 required for endothelial cell 
survival and vascular maturation. In the absence of DCs, 
angiogenesis is severely impaired. In cancer, DCs also play 
a role that is more than immunoregulatory through their 
production of potent angiogenic growth factors. Moreover, 
cancer cells can secrete substances that suppress matura-
tion of DCs, including VEGF, TGF-β, hepatocyte growth 
factor, and osteopontin, thereby maintaining a proangio-
genic, immature DC phenotype.151

	 Expression of certain cell surface molecules on both 
trophoblast and cancer cells can also confer immunologic 
protection. Among the most important of these molecules 
is the nonpolymorphic, highly conserved class I human 
leukocyte antigen (HLA) molecules such as HLAG152; in 
contrast,  the highly diverse classical HLA class I pro-
teins A, B, and C are essential in cell-mediated immune 
responses. In fact, in trophoblast cells, interferon-γ fails 
to stimulate classical HLA class I expression.153 A similar 
property of down-regulated or absent classical HLA class I 
expression can cloak cancer cells from the host’s immune 
system.154 Cancer treatment modalities including gamma 
irradiation,29 radiopharmaceutical samarium-153-ethylene-
diaminetetramethylenephosphonate,30 and chemotherapeu-
tic agents such as 5-fluorouracil155 and hypomethylating 
agents156 increase HLA class I expression.
	 Expression of HLAG on trophoblast cells and cancer 
cells has important immunomodulatory effects. In the pla-

centa, HLAG expression is most evident on EVTs at the 
fetomaternal interface, with lower expression at the prolif-
erative area of the villous column and increased expression 
with invasive, interstitial, and endovascular EVT cells.157 On 
the basis of sequence homologies, HLAG has been proposed 
as the ancestral MHC class I gene and has only a few known 
sequence variations in humans, in sharp contrast to the pro-
found allelic diversity (measured in the hundreds of allelic 
variants) of classical MHC class I genes.158 Human leukocyte 
antigen-G interacts with NK cells via inhibitory receptors, 
such as CD94/NKG2A, ILT2, and killer cell immunoglob-
ulin-like receptor KIR2DL4.120 The role of HLAG is to 
suppress cytolytic killing by both NK and cytotoxic T cells, 
induce apoptosis of immune cells, regulate cytokine produc-
tion in blood mononuclear cells, and reduce stimulatory 
capacity and impair maturation of DCs (reviewed in Hunt et 
al159). Within the tumor microenvironment, the generation of 
HLAG+–suppressive NK cells occurs by trogocytosis (ie, the 
rapid cell-to-cell contact-dependent transfer of membranes 
and associated molecules from one cell to another), lead-
ing to the inhibition of other HLAG+ (cross-inhibition) or 
HLAG– NK cells through HLAG and ILT2 cross-linking.160 
Expression of HLAG is associated with a poor prognosis in 
patients with lymphoproliferative disorders,161 melanoma,162 
mesothelioma,163 breast carcinoma,163 ovarian carcinoma,164 
renal cell carcinoma,165 squamous esophageal cancer,166 
gastric carcinoma,167 cervical cancer,168 non–small cell lung 
cancer,169 bladder cancer,170 prostate cancer,171 endometrial 
cancer,172 colorectal cancer,173 and myeloid malignancies, 
including acute myeloid leukemia.174,175 However, relatively 
little is known about the regulation of the expression of this 
important immunomodulatory molecule.174 Regulation of 
HLAG expression may be at the epigenetic level, with tran-
scription of HLAG being detectable in acute myeloid leuke-
mia cell lines after treatment with 5-aza-2′-deoxycytidine.32 
Some preliminary evidence also supports a micro-RNA 
regulatory mechanism.176 Clearly, HLAG represents an at-
tractive target for immune-based cancer therapies given its 
preferential expression in many malignancies as well as 
limited expression in normal tissues.177 Targeting HLAG 
with a peptide-based vaccine strategy to develop a cytotoxic 
T-cell response against tumor cells bearing the molecule has 
proved feasible,178 although much work remains before other 
methods of HLAG inhibition could lead to restoration of 
antitumor immunity.
	 Other cell surface tolerance signals common between 
trophoblasts and cancer cells include CD200 (OX-2) and 
CEACAM-1. Trophoblast cells expressing CD200 can in-
hibit CD8+ T cytotoxic lymphocyte (CTL) generation and 
shift the cytokine balance toward T

H
2 in vitro.179 Expression 

of CD200 is a negative prognostic factor in patients with 
multiple myeloma180 and acute myeloid leukemia,181 and 
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it has been shown to down-regulate T
H
1 cytokines in vitro 

in solid tumors, including melanomas, ovarian carcinomas, 
and renal cell carcinomas.182 As a potential cancer stem cell 
marker, CD200 may be a promising target for these cells 
that survive conventional chemotherapy.183 CEACAM-1 
(CD66a), expressed on both trophoblasts and IL-2–activated 
decidual leukocytes, plays a role in inhibiting NK-mediated 
cytolysis.184 Colocalization of osteopontin on EVT cells is 
associated with an invasive phenotype important for success-
ful placentation.185 CEACAM-1 expression in cancer is as-
sociated with increased angiogenesis in non–small cell lung 
cancer186; in melanoma, it has been shown to be predictive 
of the development of metastatic disease.187 Expression of 
other immunomodulatory molecules, including components 
of the extrinsic apoptotic pathway such as FAS, TNF super-
family receptors,188 TRAIL,189 and B7 family members such 
as B7H1 (or programmed death ligand 1, PDL-1),190 is also 
common between trophoblast and cancer cells (Table 1).
	 Chemokines and cytokines also play a role in promot-
ing a tolerogenic environment in placentation and the tumor 
microenvironment. Implantation of the blastocyst occurs in 
a T

H
1-predominant (inflammatory) milieu, but the fetoma-

ternal interface must transition to a T
H
2-polarized (immu-

nologically tolerant) state for pregnancy to continue (for an 
excellent review, refer to van Mourik et al191). However, be-
fore implantation can occur, the endometrial lining must be 
receptive in the so-called window of implantation, in which 
many immunomodulatory genes are up-regulated monthly 
during the midsecretory phase of the menstrual cycle.191 
Under the influence of progesterone, the endometrial epithe-
lium up-regulates decay-accelerating factor and osteoponin 
expression, and the endometrial stroma increases IL-15 ex-
pression.192,193 Expression of complement regulatory proteins 
(eg, decay-accelerating factor) is a well-established immu-
nomodulatory mechanism used by many cancers to escape 
complement-mediated cell death and evade an immune re-
sponse by inhibiting T-cell proliferation.194 Osteopontin has 
T

H
1 cytokine functions and is chemotactic for macrophages, 

T cells, and DCs, the last of which it induces to secrete IL-12 
and tumor necrosis factor α (TNF-α).195,196 Osteopontin is 
overexpressed in many cancers and is associated with meta-
static potential.197 Additionally, tissues that physiologically 
express high levels of osteopontin, such as bone, lung, and 
liver, may create a receptive microenvironment for metas-
tasis via interaction with osteopontin receptor CD44 on the 
surface of cancer cells.198

	 RANTES (CCL5) is a chemokine produced by tropho-
blasts that may play a role in apoptosis of potentially harmful 
maternal CD3+ cells.199 Melanoma cells can induce tumor-
infiltrating lymphocytes to secrete RANTES and subse-
quently undergo apoptosis as another mechanism to evade an 
immune response.200 Trophoblast cells also secrete chemoat-

tractant cytokines, such as GRO-α, MCP1, and IL-8, to 
actively recruit the CD14+ monocytes to the fetomaternal 
interface.201 GRO-α is an oncogenic and angiogenic cytokine 
driven by RAS, which is inappropriately activated in most 
cancers.202 Capable of inducing vascular permeability along 
with mononuclear cell recruitment, MCP1 is associated with 
angiogenesis and malignant pleural effusions.203 Inhibition 
of MCP1 can lead to reduced malignant angiogenesis and 
recruitment of tumor-associated macrophages in a mouse 
model of melanoma.204 Finally, the IL-8 pathway is well 
known to be a central immune and angiogenic factor within 
the tumor microenvironment and is important in stress-
induced chemotherapeutic resistance.205

	 A tryptophan-catabolizing enzyme, IDO is important in 
promoting tolerance by inhibiting proliferation of lympho-
cytes both at the fetomaternal interface206 and tumor mi-
croenvironment.207 Tryptophan levels have been observed 
to decrease in pregnancy with a return to normal, nonpreg-
nant levels in the puerperium,208 possibly a result of tryp-
tophan degradation by IDO-expressing trophoblast cells. 
Expression of HLAG on DCs can be induced by IDO, in-
dicating potential cooperation in immune suppression be-
tween these 2 molecules.209 Tumor-derived PGE2 secretion 
can increase IDO expression in local DCs.210 Antigen-ex-
pressing cells and IDO-expressing tumor cells might also 
contribute to local immunosuppression in tumor-draining 
lymph nodes.211 Pharmacologic inhibitors of IDO are under 
development and in early-stage clinical trials as anticancer 
agents.207 Induction of IDO can also be blocked in vitro by 
cyclooxygenase 2 inhibitors.212 When murine breast cancer 
vaccine recipients received the oral cyclooxygenase 2 in-
hibitor celecoxib, an increase in tumor-specific CTLs was 
observed.35

	 Trophoblast invasion and spiral artery remodeling are 
tightly controlled processes, likely kept in check both by 
molecular programming of trophoblast cells and by para-
crine immune factors.213 We have much to gain in terms 
of developing novel immunologic interventions for our pa-
tients with cancer by closely examining both the similari-
ties and differences of the intimate cross-talk that occurs 
within the tumor and placental microenvironments.

EVIDENCE FOR SYSTEMIC IMMUNE MODULATION

Similar to the increasing antigenic burden of progressive 
cancer,214 fetal DNA can be found circulating in maternal 
blood by the second trimester in the height of the tolero-
genic cytokine milieu.215 Although its immunologic con-
sequences have not been fully elucidated, this circulating 
DNA likely contributes to tolerance and eventual exhaus-
tion of antigen-specific CTLs. This phenomenon is well 
described for the human immunodeficiency virus, chronic 
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infection with which leads to progressive HIV-specific T 
cell dysfunction.216 In addition to circulating nucleic acids, 
cellular fragments, known as microparticles or exosomes, 
can be detected in the peripheral blood of pregnant women 
in the third trimester.217 Trophoblast-derived microparticles 
are proinflammatory, activate the coagulation system, can 
cause endothelial dysfunction, and are circulating at higher 
levels in pre-eclamptic vs normal pregnancies.218 These mi-
croparticles are also involved in down-regulation of T-cell 
activity and deletion of activated T cells through interac-
tions with FAS or TRAIL on the microparticle surface.219 A 
similar phenomenon of cancer cell–derived microparticles 
contributing to the hypercoagulable state and impaired anti-
tumor immunity of patients with cancer has been described 
(reviewed in Amin et al220). Microparticles derived from 
melanoma cells have been shown to express HLAG, likely 
contributing to their immunomodulatory properties.221

	 Just as circulating tumor cells have been identified in 
patients with early-stage malignancies,222 intact trophoblast 
cells are also known to circulate in the maternal peripheral 
blood as early as the ninth week of pregnancy.223 These fe-
tally derived cells can engraft in the mother irrespective of 
HLA disparity and establish a long-term microchimerism 
that persists for decades after parturition.224 Rates of fetal 
microchimerism are decreased in female patients with can-
cer (34%) compared with healthy controls (57%), and the 
immunomodulatory implications of this decrease are un-
clear.225 An increased number of fetal microchimeric cells 
in aggressive breast carcinoma226 and melanoma227 during 
pregnancy have been observed. Whether these cells were 
recruited to the tumor microenvironment by inflammation 
and behave as innocent bystanders or whether they partici-
pate in tumor progression by providing angiogenic or tole-
rogenic signals is unclear at this time.
	 Many additional immunomodulatory proteins are se-
creted by trophoblast cells and can be found circulating in 
maternal peripheral blood. Among these molecules, solu-
ble HLAG may be the most extensively studied.228 Soluble 
HLAG impairs NK/DC cross-talk, promotes proinflam-
matory cytokine secretion from both uterine and periph-
eral blood mononuclear cells,229 and induces apoptosis of 
CD8+ cells through CD8 ligation230 and FAS-FASL inter-
action.231 Soluble HLAG has been well documented in 
malignancies,174 including acute leukemia,232 multiple my-
eloma,233 lymphoproliferative disorders,234 breast and ovar-
ian carcinoma,163 renal cell carcinoma,165,235 lung cancer,236 
gliomas,237 and melanoma.238 Cancer cells can also trigger 
monocytes to release HLAG, further down-regulating an-
titumor immunity.239 Whether HLAG can be targeted to 
break cancer-specific tolerance remains to be investigated.
	 A search for other immunomodulatory molecules from 
conditioned media of placental tissue has yielded interest-

ing results. Surprisingly, no interleukins were identified by 
either proteomic analysis or sensitive radioimmunoassays; 
rather, in addition to pregnancy-associated hormones, sub-
stances including PSG1, glycodelin, TGF-β2, thrombos-
pondin-1, PEDF, MIF, and galectin 1 were identified as im-
portant immunoregulators in pregnancy.240 Many of these 
substances have been identified in cancer as well. For ex-
ample, PSGs may not be pregnancy specific at all. Pregnan-
cy-specific glycoprotein 9 deregulation is an early event in 
colorectal carcinogenesis.241 Expressed frequently in lung 
carcinomas,169 PSG1 is associated with estrogen receptor 
negativity and a higher risk of death in early-stage breast 
cancer.242 Glycodelin may be involved in tumor angiogen-
esis by increasing VEGF release in many cell lines.243 An 
inhibitor of TGF-β2 (overexpressed in many cancers) is in 
phase 1/2 cancer clinical trials.13 Thrombospondin 1 is an 
endogenous angiogenesis inhibitor, although its expres-
sion in tumor stroma may render tumor cells insensitive 
to VEGF and help maintain tumor cell dormancy.244 An-
other endogenous angiogenesis inhibitor, PEDF, may have 
anti-invasive effects on tumor cells.245 MIF can stabilize 
HIF-1α, a factor central to cellular response to hypoxia.246 
Galectin1 expression within tumors and the stromal tissues 
is positively correlated with cancer aggressiveness247 and a 
diminished T-cell response.248

	 Another soluble immunomodulator, soluble CD30, a 
member of the tumor necrosis superfamily of receptors 
and marker of T

H
2 polarization, is increased in women 

with normal pregnancies and reduced in those with pre-
eclampsia and intrauterine growth retardation.249 In addi-
tion to being prognostic in patients with CD30+ classical 
Hodgkin lymphoma,250 soluble CD30 is a potential mark-
er of chronic B cell hyperactivation and can predict those 
at risk of AIDS-associated non-Hodgkin lymphoma.251 The 
identification of common immunomodulators helps expand 
the concept of tolerance in pregnancy and cancer beyond 
T

H
2 and toward a more complete understanding of chronic 

inflammation, angiogenesis, and immunologic privilege.

IMPLICATIONS FOR CANCER THERAPEUTICS

As a healthy pregnancy progresses toward parturition, 
several changes within the mother reflect a restoration of 
active, T

H
1-predominant immunity. Although T

reg
 levels 

stay constant until the postpartum period,252 a gradual re-
turn of CD16+ NK cells is observed in late pregnancy.253 
Suppressed earlier in pregnancy, circulating cytotoxic 
γδ-T cells increase with the onset of labor.254 Interleukin 
2 levels decrease while granulocyte macrophage colony– 
stimulating factor and interferon-γ increase through the 
third trimester and even more markedly at the onset of la-
bor.255 Increased expression of genes associated with acute 
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TABLE 2.  Immunomodulatory Genes Differentially Expressed in 
Melanoma vs Benign Melanocytic Lesionsa

		   GSE4587		  GSE3189b	
		  fold change		  fold change
		  (melanoma vs 		  (melanoma vs
	Gene symbol	 benign nevi)	 P value	 benign nevi)	 P value

	 SPP1	 77.4	 <.001	 20.3	 <.001
	 IDO	 34.7	 <.001
	 TIMP2	 6.5	 <.001	 3.3	 <.001
	 TLR2	 6.0	 <.001	  	  
	 MMP9	 5.9	 .003	 2.5	 <.001
	 IL-8	 5.8	 .136	 3.7	 .007
	 TLR4	 6.0	 .018	  	  
	 PTX3	 4.4	 .037	  	  
	 MIF	 4.1	 .005	 3.5	 <.001
	 LGALS9	 4.1	 .002	  	  
	 LGALS1	 3.7	 .004	 4.1	 <.001
	 LPL	 1.4	 .752	 -3.2	 <.001
	 FABP4	 -2.2	 .615	 -2.3	 .009
	 FZD10	 -2.9	 .168	 -4.8	 <.001

a IL-8 = interleukin 8. For expansion of all gene symbols, see Glossary to 
Genetics Terminology at the end of the article.

b GSE3189 used the Affymetrix HG-U133A GeneChip and therefore 
lacked some probes compared with the Affymetrix U133 Plus 2.0 array 
used by GSE4587.

inflammation and neutrophil and monocyte influx has been 
observed in human fetal membranes at parturition.256,257 

Concomitant with an increase in the potent uterine con-
tractile prostanoid PGF-2α, proinflammatory cytokines 
and MMPs prepare the uterus for labor.258 Markedly down-
regulated at term compared with midgestation are genes 
involved in angiogenesis, such as angiopoietin 2.259 Taken 
together, these changes support a transition from a T

H
2 to a 

T
H
1 polarity during the third trimester.

	 In contrast, patients with advanced malignancies con-
tinue to experience a progressive failure of antitumor im-
munity, which has been associated with a T

H
2-polariza-

tion and VEGF-driven chronic inflammation.260 We have 
identified the expression of immunomodulatory genes 
known to be supportive of pregnancy in our own patients 
with metastatic melanoma via gene-expression profiling 
(unpublished data). We have also verified that these im-
munomodulatory genes are differentially expressed in 
melanoma vs benign melanocytic nevi in 2 independent 
publically available datasets from the National Center 
for Biotechnology Information/GenBank GEO database: 
GSE4587,261 which was analyzed on the GeneChip Human 
Genome U133 Plus 2.0 Array platform (Affymetrix, Santa 
Clara, CA), and GSE3189,262 which was analyzed on the 
GeneChip Human Genome U133 Array Set HG-U133A 
platform (Affymetrix). We selected approximately 70 im-
munomodulatory genes on the basis of our critical review 
of the obstetrics literature, log-transformed the raw data, 
and performed an analysis of variance on this gene set 
on Partek 6.4 software. A summary of results is listed in 
Table 2. Osteopontin and other important components of 

innate immunity such as TLR2 and TLR4 and PTX3 were 
significantly up-regulated in melanoma compared with 
benign nevi. Galectins 1 and 9 were also significantly up-
regulated compared with nevi. Notably down-regulated in 
melanoma were genes known to be up-regulated in term 
placenta,259,263 including LPL, FABP4, and FZD10 (a Wnt 
receptor). Overall, this pattern is supportive of our theory 
that tumor cells use similar mechanisms of immune es-
cape as those cells of the developing placenta, although 
these similarities have not yet been studied in a system-
atic fashion. Given what we have learned about the simi-
larities between the placenta and tumor microenviron-
ment, we plan to next comprehensively evaluate changes 
in systemic immune homeostasis in pregnancy vs cancer 
in order to prioritize potential therapeutic targets. In par-
ticular, identifying immunologic distinctions between 
pregnancy and cancer will be critical for this process.

CONCLUSION

By comparing immunologic patterns throughout healthy 
pregnancies, and in particular the return to T

H
1-polarized 

immunity through the third trimester, with those patterns 
observed in advanced malignancies, we have an opportu-
nity to learn potential mechanisms to overcome the burden 
of long-term antigenic exposure and immunologic exhaus-
tion in patients with cancer. The challenge for investigators 
in this field will be to extend our observations beyond the 
T

H
1/T

H
2 paradigm in both pregnancy and cancer to a model 

that can both assess the status and guide treatment of ma-
lignancies in an individualized, rational, real-time manner. 
A critical need exists for the development of treatments 
aimed at all aspects of cancer: malignant proliferation, in-
vasion, vasculogenic mimicry, angiogenesis, and immune 
privilege. Studying how all these aspects are orchestrated 
in the predictable, physiologic process of pregnancy can 
facilitate the search for novel cancer treatment strategies, 
from cytotoxic chemotherapy to biologic agents and im-
munologic adjuncts, in the often unpredictable and arduous 
fight against the pathologic process of cancer.

Glossary of Genetics Terminology

AKT = v-akt murine thymoma viral oncogene homolog
ALK = anaplastic lymphoma receptor tyrosine kinase
BCL2 = B cell chronic lymphocytic leukemia/lymphoma 2
CDK = cyclin dependent kinase
CEACAM1 = carcinoembryonic antigen-related cell adhesion 

molecule 1 (biliary glycoprotein)
CMET (also known as MET) = met proto-oncogene (hepatocyte 

growth factor)  receptor
CSF = colony-stimulating factor
CSF1R = CSF type 1 receptor
CXCR4 = chemokine (C-X-C motif) receptor 4
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EGF  = epidermal growth factor (beta-urogastrone)
ERK = extracellular signal–related kinase
FABP4 = fatty acid–binding protein 4
FAK = focal adhesion kinase
FAS = Fas (TNF receptor superfamily, member 6)
FASL = FAS ligand
FCγIIIA = FC gamma receptor III A
FGF = fibroblast growth factor
FLT1 = fms-related tyrosine kinase 1 (vascular endothelial 

growth factor/vascular permeability factor receptor)
FOXP3 = forkhead box P3
FZD10 = frizzled homolog 10
GRO-α = growth-related oncogene α
HGF = hepatocyte growth factor
HIF-1α = hypoxia inducible factor 1α
HSP27 = heat shock protein 27
IDO = indoleamine 2, 3 dioxygenase
IGF = insulinlike growth factor
IGF1R = IGF type 1 receptor
ILT2 = Ig-like transcript 2
JAK = janus kinase
LGALS1 = galactin 1
LGALS9 = galactin 9
LPL = lipoprotein lipase
MAPK = mitogen-activated protein kinase
MCP1 = monocyte chemoattractant protein 1
MEK (also known as MAP2K) = MAPK/ERK kinase
MIF =  macrophage migration inhibitory factor
Mig-7 = migration-induction protein 7
MDM2 = mouse double minute 2
MMP = matrix metalloproteinase
MTOR = mammalian target of rapamycin
MUC1 = mucin 1
NF-κB = nuclear factor κB
p38 = tumor protein 38
PAR1 = protease activated receptor 1
PDGF = platelet-derived growth factor
PDGFR = PDGF receptor
PEDF = pigment epithelial–derived factor
PGE2 = prostaglandin E2
PGF = placental growth factor
PI3K = phosphoinositide-3 kinase
PSG1 = pregnancy-specific glycoprotein 1
PTX3 = pentraxin 3
RANTES (also known as CCL5) = regulated on activation, nor-

mal T-cell expressed and secreted
RAF = v-raf-1 murine leukemia viral oncogene homolog 1
RAS = rat sarcoma viral oncogene homolog
SDF (also known as CXCL12) = stromal-derived factor 1
SPP1 = osteopontin
STAT = signal transducers and activator of transcription
TGF = transforming growth factor
TIM3 (also known as HAVCR2) = T cell immunoglobulin mucin 3
TIMP2 = tissue inhibitor of metalloproteinase 2
TLR = toll-like receptor
TNF = tumor necrosis factor
TRAIL = TNF-related apoptosis-inducing ligand
TRAILR = TRAIL receptor
uPA = urokinase plasminogen activator
VEGF = vascular endothelial growth factor
VEGFR = VEGF receptor

waf1/cip1 (also known as CDKN1A) = cyclin-dependent kinase 
inhibitor 1A

Wnt = wingless/T-cell factor
XIAP = X-link inhibitor of apoptosis protein
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